ky2.jpg (3738 字节)

首  页新闻动态政策法规考试大纲考试样题热点问题MBA考研论坛考博天地资料下载 关于本站

数学二
  [考试科目]
  高等数学、线性代数初步

  高等数学
  一、函数、极限、连续
  考试内容

  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义以及它们的性质 函数的左极限与右极限 无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限(略) 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)

  考试要求
  1.理解函数的概念,会作函数符号运算并会建立简单应用问题中的函数关系式。
  2.了解函数的奇偶性、单调性、周期性和有界性。
  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
  4.掌握基本初等函数的性质及图形。
  5.理解极限的概念,理解函数的左极限与右极限概念及函数极限存在与左、右极限之间的关系。
  6.掌握极限的性质及四则运算法则。
  7.理解极限存在的两个准则,并会利用它们求极限,掌握用两个重要极限求极限的方法。
  8.理解无穷小、无穷大以及阶的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
  10.了解初等函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  二、一元函数微分学

  考试内容

  导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线及其方程 基本初等函数的导数 导数和微分的四则运算 反函数、复合函数。隐函数以及参数方程所确定的函数的微分法 高阶导数的概念 某些简单函数的n阶导数 一阶微分形式的不变性 微分在近似计算中的应用 罗尔(Rolle)定理 拉格朗日(LAGRANGE)中值定理 柯西(Cauchy)中值定理 泰勒(Taylor)定理 洛必达(L’HOspiial)法则 函数的极值及其求法 函数单调性 函数图形凹凸性、拐点及渐进线 函数图形的描绘 函数最大值和最小值及其简单应用 弧微分 曲率的概念 曲率半径 方程近似解的二分法和切线法

  考试要求
  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分,了解微分在近似计算中的应用。
  3.了解高阶导数的概念,会求分段函数的一阶、二阶导数,并会求一些简单函数的”阶导数。
  4.会求隐函数和由参数方程所确定的函数的一阶、二阶导数,并会求简单函数的n阶导数。
  5.理解罗尔定理和拉格朗日中值定理,了解柯西中值定理和泰勒定理,并会运用它们解决一些简单间题。
  6.理解函数的极值概念、掌握用导数判断函数的单调性和求函数极值的方法,会求函救的最大值、最小值及其简单应用。
  7.会用导数判断函数图形的凹凸性和拐点,会求会求函数图形的水平、铅直和斜渐近线,会描绘函数的图形。
  8.掌握用洛必达法则求未定式极限的方法。
  9.了解曲率和曲率半径的概念并会计算曲率和曲率半径。
  10.了解求方程近似解的二分法和切线法。

  三、一元函数积分学
  考试内容
  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(NewtOn一leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分的概念及计算 定积分的近似计算法 定积分的应用

  考试要求
  1.理解原函数概念,理解不定积分和定积分的概念。
  2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
  3.会求有理函数、三角函数的有理式和简单无理函数的积分。
  4.理解变上限定积分定义的函数,并会求它的导数,掌握牛顿一莱布尼茨公式。
  5.了解广义积分的概念并会计算广义积分。
  6.了解定积分的近似计算法。
  7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积已知的立体体积、变力作功、引力 、压力和函数平均值等)。

  四、常微分方程

  考试内容

  常微分方程的概念 微分方程的解、阶、通解、初始条件和特解 变量可分离的方程 齐次方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的一些简单应用

  考试要求
  1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
  2.掌握变量可分离的方程及一阶线性方程的解法,会解齐次方程。
  3.会用降阶法解下列方程:(略)
  4.理解二阶线性微分方程解的性质及解的结构定理。
  5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
  6.会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
  7.会用微分方程解决一些简单的应用问题;
线性代数初步
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 单位矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质 矩阵的线性运算 矩阵的乘法 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 矩阵的伴随矩阵 矩阵的初等变换 矩阵等价 矩阵的秩 初等变换求矩阵的秩和逆矩阵的方法
考试要求
1.了解矩阵的概念.
2.了解单位矩阵、对角矩阵、

 

Copyright©  2000-2001, chinakaoyan.com
All Rights Reserved
Any question can mail to
webmaster@chinakaoyan.com 2000.9.15